1. Introduction
This guide documents autoloading, reloading, and eager loading in Rails applications.
In an ordinary Ruby program, you explicitly load the files that define classes and modules you want to use. For example, the following controller refers to ApplicationController
and Post
, and you'd normally issue require
calls for them:
# DO NOT DO THIS.
require "application_controller"
require "post"
# DO NOT DO THIS.
class PostsController < ApplicationController
def index
@posts = Post.all
end
end
This is not the case in Rails applications, where application classes and modules are just available everywhere without require
calls:
class PostsController < ApplicationController
def index
@posts = Post.all
end
end
Rails autoloads them on your behalf if needed. This is possible thanks to a couple of Zeitwerk loaders Rails sets up on your behalf, which provide autoloading, reloading, and eager loading.
On the other hand, those loaders do not manage anything else. In particular, they do not manage the Ruby standard library, gem dependencies, Rails components themselves, or even (by default) the application lib
directory. That code has to be loaded as usual.
2. Project Structure
In a Rails application file names have to match the constants they define, with directories acting as namespaces.
For example, the file app/helpers/users_helper.rb
should define UsersHelper
and the file app/controllers/admin/payments_controller.rb
should define Admin::PaymentsController
.
By default, Rails configures Zeitwerk to inflect file names with String#camelize
. For example, it expects that app/controllers/users_controller.rb
defines the constant UsersController
because that is what "users_controller".camelize
returns.
The section Customizing Inflections below documents ways to override this default.
Please, check the Zeitwerk documentation for further details.
3. config.autoload_paths
We refer to the list of application directories whose contents are to be autoloaded and (optionally) reloaded as autoload paths. For example, app/models
. Such directories represent the root namespace: Object
.
Autoload paths are called root directories in Zeitwerk documentation, but we'll stay with "autoload path" in this guide.
Within an autoload path, file names must match the constants they define as documented here.
By default, the autoload paths of an application consist of all the subdirectories of app
that exist when the application boots ---except for assets
, javascript
, and views
--- plus the autoload paths of engines it might depend on.
For example, if UsersHelper
is implemented in app/helpers/users_helper.rb
, the module is autoloadable, you do not need (and should not write) a require
call for it:
$ bin/rails runner 'p UsersHelper'
UsersHelper
Rails adds custom directories under app
to the autoload paths automatically. For example, if your application has app/presenters
, you don't need to configure anything in order to autoload presenters; it works out of the box.
The array of default autoload paths can be extended by pushing to config.autoload_paths
, in config/application.rb
or config/environments/*.rb
. For example:
module MyApplication
class Application < Rails::Application
config.autoload_paths << "#{root}/extras"
end
end
Also, engines can push in body of the engine class and in their own config/environments/*.rb
.
Please do not mutate ActiveSupport::Dependencies.autoload_paths
; the public interface to change autoload paths is config.autoload_paths
.
You cannot autoload code in the autoload paths while the application boots. In particular, directly in config/initializers/*.rb
. Please check Autoloading when the application boots down below for valid ways to do that.
The autoload paths are managed by the Rails.autoloaders.main
autoloader.
4. config.autoload_lib(ignore:)
By default, the lib
directory does not belong to the autoload paths of applications or engines.
The configuration method config.autoload_lib
adds the lib
directory to config.autoload_paths
and config.eager_load_paths
. It has to be invoked from config/application.rb
or config/environments/*.rb
, and it is not available for engines.
Normally, lib
has subdirectories that should not be managed by the autoloaders. Please, pass their name relative to lib
in the required ignore
keyword argument. For example:
config.autoload_lib(ignore: %w(assets tasks))
Why? While assets
and tasks
share the lib
directory with regular Ruby code, their contents are not meant to be reloaded or eager loaded.
The ignore
list should have all lib
subdirectories that do not contain files with .rb
extension, or that should not be reloaded or eager loaded. For example,
config.autoload_lib(ignore: %w(assets tasks templates generators middleware))
config.autoload_lib
is not available before 7.1, but you can still emulate it as long as the application uses Zeitwerk:
# config/application.rb
module MyApp
class Application < Rails::Application
lib = root.join("lib")
config.autoload_paths << lib
config.eager_load_paths << lib
Rails.autoloaders.main.ignore(
lib.join("assets"),
lib.join("tasks"),
lib.join("generators")
)
# ...
end
end
5. config.autoload_once_paths
You may want to be able to autoload classes and modules without reloading them. The autoload_once_paths
configuration stores code that can be autoloaded, but won't be reloaded.
By default, this collection is empty, but you can extend it pushing to config.autoload_once_paths
. You can do so in config/application.rb
or config/environments/*.rb
. For example:
module MyApplication
class Application < Rails::Application
config.autoload_once_paths << "#{root}/app/serializers"
end
end
Also, engines can push in body of the engine class and in their own config/environments/*.rb
.
If app/serializers
is pushed to config.autoload_once_paths
, Rails no longer considers this an autoload path, despite being a custom directory under app
. This setting overrides that rule.
This is key for classes and modules that are cached in places that survive reloads, like the Rails framework itself.
For example, Active Job serializers are stored inside Active Job:
# config/initializers/custom_serializers.rb
Rails.application.config.active_job.custom_serializers << MoneySerializer
and Active Job itself is not reloaded when there's a reload, only application and engines code in the autoload paths is.
Making MoneySerializer
reloadable would be confusing, because reloading an edited version would have no effect on that class object stored in Active Job. Indeed, if MoneySerializer
was reloadable, starting with Rails 7 such initializer would raise a NameError
.
Another use case is when engines decorate framework classes:
initializer "decorate ActionController::Base" do
ActiveSupport.on_load(:action_controller_base) do
include MyDecoration
end
end
There, the module object stored in MyDecoration
by the time the initializer runs becomes an ancestor of ActionController::Base
, and reloading MyDecoration
is pointless, it won't affect that ancestor chain.
Classes and modules from the autoload once paths can be autoloaded in config/initializers
. So, with that configuration this works:
# config/initializers/custom_serializers.rb
Rails.application.config.active_job.custom_serializers << MoneySerializer
Technically, you can autoload classes and modules managed by the once
autoloader in any initializer that runs after :bootstrap_hook
.
The autoload once paths are managed by Rails.autoloaders.once
.
6. config.autoload_lib_once(ignore:)
The method config.autoload_lib_once
is similar to config.autoload_lib
, except that it adds lib
to config.autoload_once_paths
instead. It has to be invoked from config/application.rb
or config/environments/*.rb
, and it is not available for engines.
By calling config.autoload_lib_once
, classes and modules in lib
can be autoloaded, even from application initializers, but won't be reloaded.
config.autoload_lib_once
is not available before 7.1, but you can still emulate it as long as the application uses Zeitwerk:
# config/application.rb
module MyApp
class Application < Rails::Application
lib = root.join("lib")
config.autoload_once_paths << lib
config.eager_load_paths << lib
Rails.autoloaders.once.ignore(
lib.join("assets"),
lib.join("tasks"),
lib.join("generators")
)
# ...
end
end
7. Reloading
Rails automatically reloads classes and modules if application files in the autoload paths change.
More precisely, if the web server is running and application files have been modified, Rails unloads all autoloaded constants managed by the main
autoloader just before the next request is processed. That way, application classes or modules used during that request will be autoloaded again, thus picking up their current implementation in the file system.
Reloading can be enabled or disabled. The setting that controls this behavior is config.enable_reloading
, which is true
by default in development
mode, and false
by default in production
mode. For backwards compatibility, Rails also supports config.cache_classes
, which is equivalent to !config.enable_reloading
.
Rails uses an evented file monitor to detect files changes by default. It can be configured instead to detect file changes by walking the autoload paths. This is controlled by the config.file_watcher
setting.
In a Rails console there is no file watcher active regardless of the value of config.enable_reloading
. This is because, normally, it would be confusing to have code reloaded in the middle of a console session. Similar to an individual request, you generally want a console session to be served by a consistent, non-changing set of application classes and modules.
However, you can force a reload in the console by executing reload!
:
irb(main):001:0> User.object_id
=> 70136277390120
irb(main):002:0> reload!
Reloading...
=> true
irb(main):003:0> User.object_id
=> 70136284426020
As you can see, the class object stored in the User
constant is different after reloading.
7.1. Reloading and Stale Objects
It is very important to understand that Ruby does not have a way to truly reload classes and modules in memory, and have that reflected everywhere they are already used. Technically, "unloading" the User
class means removing the User
constant via Object.send(:remove_const, "User")
.
For example, check out this Rails console session:
irb> joe = User.new
irb> reload!
irb> alice = User.new
irb> joe.class == alice.class
=> false
joe
is an instance of the original User
class. When there is a reload, the User
constant then evaluates to a different, reloaded class. alice
is an instance of the newly loaded User
, but joe
is not — his class is stale. You may define joe
again, start an IRB subsession, or just launch a new console instead of calling reload!
.
Another situation in which you may find this gotcha is subclassing reloadable classes in a place that is not reloaded:
# lib/vip_user.rb
class VipUser < User
end
if User
is reloaded, since VipUser
is not, the superclass of VipUser
is the original stale class object.
Bottom line: do not cache reloadable classes or modules.
8. Autoloading When the Application Boots
While booting, applications can autoload from the autoload once paths, which are managed by the once
autoloader. Please check the section config.autoload_once_paths
above.
However, you cannot autoload from the autoload paths, which are managed by the main
autoloader. This applies to code in config/initializers
as well as application or engines initializers.
Why? Initializers only run once, when the application boots. They do not run again on reloads. If an initializer used a reloadable class or module, edits to them would not be reflected in that initial code, thus becoming stale. Therefore, referring to reloadable constants during initialization is disallowed.
Let's see what to do instead.
8.1. Use Case 1: During Boot, Load Reloadable Code
8.1.1. Autoload on Boot and on Each Reload
Let's imagine ApiGateway
is a reloadable class and you need to configure its endpoint while the application boots:
# config/initializers/api_gateway_setup.rb
ApiGateway.endpoint = "https://example.com" # NameError
Initializers cannot refer to reloadable constants, you need to wrap that in a to_prepare
block, which runs on boot, and after each reload:
# config/initializers/api_gateway_setup.rb
Rails.application.config.to_prepare do
ApiGateway.endpoint = "https://example.com" # CORRECT
end
For historical reasons, this callback may run twice. The code it executes must be idempotent.
8.1.2. Autoload on Boot Only
Reloadable classes and modules can be autoloaded in after_initialize
blocks too. These run on boot, but do not run again on reload. In some exceptional cases this may be what you want.
Preflight checks are a use case for this:
# config/initializers/check_admin_presence.rb
Rails.application.config.after_initialize do
unless Role.where(name: "admin").exists?
abort "The admin role is not present, please seed the database."
end
end
8.2. Use Case 2: During Boot, Load Code that Remains Cached
Some configurations take a class or module object, and they store it in a place that is not reloaded. It is important that these are not reloadable, because edits would not be reflected in those cached stale objects.
One example is middleware:
config.middleware.use MyApp::Middleware::Foo
When you reload, the middleware stack is not affected, so it would be confusing that MyApp::Middleware::Foo
is reloadable. Changes in its implementation would have no effect.
Another example is Active Job serializers:
# config/initializers/custom_serializers.rb
Rails.application.config.active_job.custom_serializers << MoneySerializer
Whatever MoneySerializer
evaluates to during initialization gets pushed to the custom serializers, and that object stays there on reloads.
Yet another example are railties or engines decorating framework classes by including modules. For instance, turbo-rails
decorates ActiveRecord::Base
this way:
initializer "turbo.broadcastable" do
ActiveSupport.on_load(:active_record) do
include Turbo::Broadcastable
end
end
That adds a module object to the ancestor chain of ActiveRecord::Base
. Changes in Turbo::Broadcastable
would have no effect if reloaded, the ancestor chain would still have the original one.
Corollary: Those classes or modules cannot be reloadable.
An idiomatic way to organize these files is to put them in the lib
directory and load them with require
where needed. For example, if the application has custom middleware in lib/middleware
, issue a regular require
call before configuring it:
require "middleware/my_middleware"
config.middleware.use MyMiddleware
Additionally, if lib
is in the autoload paths, configure the autoloader to ignore that subdirectory:
# config/application.rb
config.autoload_lib(ignore: %w(assets tasks ... middleware))
since you are loading those files yourself.
As noted above, another option is to have the directory that defines them in the autoload once paths and autoload. Please check the section about config.autoload_once_paths for details.
8.3. Use Case 3: Configure Application Classes for Engines
Let's suppose an engine works with the reloadable application class that models users, and has a configuration point for it:
# config/initializers/my_engine.rb
MyEngine.configure do |config|
config.user_model = User # NameError
end
In order to play well with reloadable application code, the engine instead needs applications to configure the name of that class:
# config/initializers/my_engine.rb
MyEngine.configure do |config|
config.user_model = "User" # OK
end
Then, at run time, config.user_model.constantize
gives you the current class object.
9. Eager Loading
In production-like environments it is generally better to load all the application code when the application boots. Eager loading puts everything in memory ready to serve requests right away, and it is also CoW-friendly.
Eager loading is controlled by the flag config.eager_load
, which is disabled by default in all environments except production
. When a Rake task gets executed, config.eager_load
is overridden by config.rake_eager_load
, which is false
by default. So, by default, in production environments Rake tasks do not eager load the application.
The order in which files are eager-loaded is undefined.
During eager loading, Rails invokes Zeitwerk::Loader.eager_load_all
. That ensures all gem dependencies managed by Zeitwerk are eager-loaded too.
10. Single Table Inheritance
Single Table Inheritance doesn't play well with lazy loading: Active Record has to be aware of STI hierarchies to work correctly, but when lazy loading, classes are precisely loaded only on demand!
To address this fundamental mismatch we need to preload STIs. There are a few options to accomplish this, with different trade-offs. Let's see them.
10.1. Option 1: Enable Eager Loading
The easiest way to preload STIs is to enable eager loading by setting:
config.eager_load = true
in config/environments/development.rb
and config/environments/test.rb
.
This is simple, but may be costly because it eager loads the entire application on boot and on every reload. The trade-off may be worthwhile for small applications, though.
10.2. Option 2: Preload a Collapsed Directory
Store the files that define the hierarchy in a dedicated directory, which makes sense also conceptually. The directory is not meant to represent a namespace, its sole purpose is to group the STI:
app/models/shapes/shape.rb
app/models/shapes/circle.rb
app/models/shapes/square.rb
app/models/shapes/triangle.rb
In this example, we still want app/models/shapes/circle.rb
to define Circle
, not Shapes::Circle
. This may be your personal preference to keep things simple, and also avoids refactors in existing code bases. The collapsing feature of Zeitwerk allows us to do that:
# config/initializers/preload_stis.rb
shapes = "#{Rails.root}/app/models/shapes"
Rails.autoloaders.main.collapse(shapes) # Not a namespace.
unless Rails.application.config.eager_load
Rails.application.config.to_prepare do
Rails.autoloaders.main.eager_load_dir(shapes)
end
end
In this option, we eager load these few files on boot and reload even if the STI is not used. However, unless your application has a lot of STIs, this won't have any measurable impact.
The method Zeitwerk::Loader#eager_load_dir
was added in Zeitwerk 2.6.2. For older versions, you can still list the app/models/shapes
directory and invoke require_dependency
on its contents.
If models are added, modified, or deleted from the STI, reloading works as expected. However, if a new separate STI hierarchy is added to the application, you'll need to edit the initializer and restart the server.
10.3. Option 3: Preload a Regular Directory
Similar to the previous one, but the directory is meant to be a namespace. That is, app/models/shapes/circle.rb
is expected to define Shapes::Circle
.
For this one, the initializer is the same except no collapsing is configured:
# config/initializers/preload_stis.rb
unless Rails.application.config.eager_load
Rails.application.config.to_prepare do
Rails.autoloaders.main.eager_load_dir("#{Rails.root}/app/models/shapes")
end
end
Same trade-offs.
10.4. Option 4: Preload Types from the Database
In this option we do not need to organize the files in any way, but we hit the database:
# config/initializers/preload_stis.rb
unless Rails.application.config.eager_load
Rails.application.config.to_prepare do
types = Shape.unscoped.select(:type).distinct.pluck(:type)
types.compact.each(&:constantize)
end
end
The STI will work correctly even if the table does not have all the types, but methods like subclasses
or descendants
won't return the missing types.
If models are added, modified, or deleted from the STI, reloading works as expected. However, if a new separate STI hierarchy is added to the application, you'll need to edit the initializer and restart the server.
11. Customizing Inflections
By default, Rails uses String#camelize
to know which constant a given file or directory name should define. For example, posts_controller.rb
should define PostsController
because that is what "posts_controller".camelize
returns.
It could be the case that some particular file or directory name does not get inflected as you want. For instance, html_parser.rb
is expected to define HtmlParser
by default. What if you prefer the class to be HTMLParser
? There are a few ways to customize this.
The easiest way is to define acronyms:
ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.acronym "HTML"
inflect.acronym "SSL"
end
Doing so affects how Active Support inflects globally. That may be fine in some applications, but you can also customize how to camelize individual basenames independently from Active Support by passing a collection of overrides to the default inflectors:
Rails.autoloaders.each do |autoloader|
autoloader.inflector.inflect(
"html_parser" => "HTMLParser",
"ssl_error" => "SSLError"
)
end
That technique still depends on String#camelize
, though, because that is what the default inflectors use as fallback. If you instead prefer not to depend on Active Support inflections at all and have absolute control over inflections, configure the inflectors to be instances of Zeitwerk::Inflector
:
Rails.autoloaders.each do |autoloader|
autoloader.inflector = Zeitwerk::Inflector.new
autoloader.inflector.inflect(
"html_parser" => "HTMLParser",
"ssl_error" => "SSLError"
)
end
There is no global configuration that can affect said instances; they are deterministic.
You can even define a custom inflector for full flexibility. Please check the Zeitwerk documentation for further details.
11.1. Where Should Inflection Customization Go?
If an application does not use the once
autoloader, the snippets above can go in config/initializers
. For example, config/initializers/inflections.rb
for the Active Support use case, or config/initializers/zeitwerk.rb
for the other ones.
Applications using the once
autoloader have to move or load this configuration from the body of the application class in config/application.rb
, because the once
autoloader uses the inflector early in the boot process.
12. Custom Namespaces
As we saw above, autoload paths represent the top-level namespace: Object
.
Let's consider app/services
, for example. This directory is not generated by default, but if it exists, Rails automatically adds it to the autoload paths.
By default, the file app/services/users/signup.rb
is expected to define Users::Signup
, but what if you prefer that entire subtree to be under a Services
namespace? Well, with default settings, that can be accomplished by creating a subdirectory: app/services/services
.
However, depending on your taste, that just might not feel right to you. You might prefer that app/services/users/signup.rb
simply defines Services::Users::Signup
.
Zeitwerk supports custom root namespaces to address this use case, and you can customize the main
autoloader to accomplish that:
# config/initializers/autoloading.rb
# The namespace has to exist.
#
# In this example we define the module on the spot. Could also be created
# elsewhere and its definition loaded here with an ordinary `require`. In
# any case, `push_dir` expects a class or module object.
module Services; end
Rails.autoloaders.main.push_dir("#{Rails.root}/app/services", namespace: Services)
Rails < 7.1 did not support this feature, but you can still add this additional code in the same file and get it working:
# Additional code for applications running on Rails < 7.1.
app_services_dir = "#{Rails.root}/app/services" # has to be a string
ActiveSupport::Dependencies.autoload_paths.delete(app_services_dir)
Rails.application.config.watchable_dirs[app_services_dir] = [:rb]
Custom namespaces are also supported for the once
autoloader. However, since that one is set up earlier in the boot process, the configuration cannot be done in an application initializer. Instead, please put it in config/application.rb
, for example.
13. Autoloading and Engines
Engines run in the context of a parent application, and their code is autoloaded, reloaded, and eager loaded by the parent application. If the application runs in zeitwerk
mode, the engine code is loaded by zeitwerk
mode. If the application runs in classic
mode, the engine code is loaded by classic
mode.
When Rails boots, engine directories are added to the autoload paths, and from the point of view of the autoloader, there's no difference. Autoloaders' main inputs are the autoload paths, and whether they belong to the application source tree or to some engine source tree is irrelevant.
For example, this application uses Devise:
$ bin/rails runner 'pp ActiveSupport::Dependencies.autoload_paths'
[".../app/controllers",
".../app/controllers/concerns",
".../app/helpers",
".../app/models",
".../app/models/concerns",
".../gems/devise-4.8.0/app/controllers",
".../gems/devise-4.8.0/app/helpers",
".../gems/devise-4.8.0/app/mailers"]
If the engine controls the autoloading mode of its parent application, the engine can be written as usual.
However, if an engine supports Rails 6 or Rails 6.1 and does not control its parent applications, it has to be ready to run under either classic
or zeitwerk
mode. Things to take into account:
If
classic
mode would need arequire_dependency
call to ensure some constant is loaded at some point, write it. Whilezeitwerk
would not need it, it won't hurt, it will work inzeitwerk
mode too.classic
mode underscores constant names ("User" -> "user.rb"), andzeitwerk
mode camelizes file names ("user.rb" -> "User"). They coincide in most cases, but they don't if there are series of consecutive uppercase letters as in "HTMLParser". The easiest way to be compatible is to avoid such names. In this case, pick "HtmlParser".In
classic
mode, the fileapp/model/concerns/foo.rb
is allowed to define bothFoo
andConcerns::Foo
. Inzeitwerk
mode, there's only one option: it has to defineFoo
. In order to be compatible, defineFoo
.
14. Testing
14.1. Manual Testing
The task zeitwerk:check
checks if the project tree follows the expected naming conventions and it is handy for manual checks. For example, if you're migrating from classic
to zeitwerk
mode, or if you're fixing something:
$ bin/rails zeitwerk:check
Hold on, I am eager loading the application.
All is good!
There can be additional output depending on the application configuration, but the last "All is good!" is what you are looking for.
14.2. Automated Testing
It is a good practice to verify in the test suite that the project eager loads correctly.
That covers Zeitwerk naming compliance and other possible error conditions. Please check the section about testing eager loading in the Testing Rails Applications guide.
15. Troubleshooting
The best way to follow what the loaders are doing is to inspect their activity.
The easiest way to do that is to include
Rails.autoloaders.log!
in config/application.rb
after loading the framework defaults. That will print traces to standard output.
If you prefer logging to a file, configure this instead:
Rails.autoloaders.logger = Logger.new("#{Rails.root}/log/autoloading.log")
The Rails logger is not yet available when config/application.rb
executes. If you prefer to use the Rails logger, configure this setting in an initializer instead:
# config/initializers/log_autoloaders.rb
Rails.autoloaders.logger = Rails.logger
16. Rails.autoloaders
The Zeitwerk instances managing your application are available at
Rails.autoloaders.main
Rails.autoloaders.once
The predicate
Rails.autoloaders.zeitwerk_enabled?
is still available in Rails 7 applications, and returns true
.